17=6t+(t^2)/2

Simple and best practice solution for 17=6t+(t^2)/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 17=6t+(t^2)/2 equation:



17=6t+(t^2)/2
We move all terms to the left:
17-(6t+(t^2)/2)=0
We get rid of parentheses
-t^2/2-6t+17=0
We multiply all the terms by the denominator
-t^2-6t*2+17*2=0
We add all the numbers together, and all the variables
-1t^2-6t*2+34=0
Wy multiply elements
-1t^2-12t+34=0
a = -1; b = -12; c = +34;
Δ = b2-4ac
Δ = -122-4·(-1)·34
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{70}}{2*-1}=\frac{12-2\sqrt{70}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{70}}{2*-1}=\frac{12+2\sqrt{70}}{-2} $

See similar equations:

| -5x+12=5x-x | | 4x-7(x+3)=2(x+2) | | 2r+1.5r=62 | | x-2+2.25=13.50 | | x+2x-5,+2x-5=55 | | (3x+37)+(4x-3)=90 | | -0.5(7y+4)-0.375(-6y-5)=2y-7.71875 | | (3x+37)+(4x-3)=180 | | 10x+7=18-5x | | 1/4a=226 | | 3x+37+4x-3=180 | | -0.75(8y+4)-0.5(-7y-5)=-10.5 | | x^2+x+180=180 | | 95=5u+15 | | 49=1.4x | | 2n-18n=-30n | | 9.97=w+7.97 | | 6(3x-1)=13x-x-6 | | x^2-x+180=180 | | 4p^2+32p+60=0 | | 15y+8(-8y+11)=-402 | | 2n+18-n=-30-n | | -5+1=-12c+5+-5 | | 6x-8+2(-6x-8-2)=44 | | 12-9x=-3-30 | | 3/5x=6/28 | | 1=-12c+5 | | 6+4x-1=4x-6-20x | | 90=14+x | | -4x+2=-9x-18 | | -4x+4=10x-9 | | 8x+3x-5x=-12 |

Equations solver categories